Evaluating Search Effectiveness: *Keeping Pace with Technology?*

Office of Search and Rescue

United States Coast Guard

Bottom Line Up Front

Primary Elements of a Successful Search

- Look in the right place
- Be able to detect what you are looking for

Homeland United States Coast Guard

Scenario: Person in the Water

Search and Rescue *Optimal* Planning System (SAROPS) - <u>Simulator</u>

Homeland United States Coast Guard Security United States Coast Guard

Scenario: +9 hours

SAROPS - Planner

Search Patter	m (1 of 2): A-1:11111-Ur	nknown	× On Scene Condi	tions: A-1:11111-Visual	×
Name SRU Type Type CST Search Time	A • 1 :	11111 - Unknown		Visual/Shared Visibility Wind Speed Sea Height	
(Available) EST Search Speed		0.75 HRS 0	NVG Moon Visible &	700 1 14 14	Radar Radar Type
Sensor Visual NVG ESS Radar Other		Crew Fatigue Predicted O Observed On Scene Conditions sud Ceiling	Phase (%) Cloud Cover (% Whitecaps Is Illuminated? Time On Task	7.90 % Visble	Mode
Optimize Seam Cuddy LR Cr PIW v	set wh Object y Cabin npy, no Bist, no Drg w/PFD Avg	Sweep Width	ESS Air Temp [Water Temp] ESS Mode [Unknown	Sensor Dietails Corrected Sweep Width Cancel

Homeland United States Coast Guard

Scenario: Optimized Search NVG+ESS

What is the Challenge?

Planning effective and efficient searches requires detailed quantitative measure for each sensor's performance over its entire maximum detection range for every combination of search object type and environmental condition.

omeland United States Coast Guard

Scenario: Suboptimal Search

Homeland United States Coast Guard

Scenario: Suboptimal Search

Homeland United States Coast Guard

Scenario: Double the Effort

Challenges

- The traditional empirical method of developing sensor profiles is *exceptionally* resource intensive
- Lack of *adequate* methodology to evaluate AI search object detection technology for search planning
- Lack of consistent use of Sweep Width to communicate sensor effectiveness

neland United States Coast Guard

"Width of the swath

Sweep Width

Research and Development

- USCG Research and Development Center Initiatives
 - Incorporating Sensor Performance in SAROPS
 - Methodology to quantify the effectiveness of AI object detection for SAR
 - Cooperative Research and Development
 Agreement

rity United States Coast Guard

Additional Material Follows:

International Standard: Effective Sweep Width

Width of the swath where the number of objects missed within the swath equals the number of objects detected outside the swath.

Historical Approach

Detected?	Late ral range	Time on Task	Visibility	WindSpeed	CloudCover	Sea Height	SRU_speed	Sun Elevation	Altitude	SRU	SO	DATE
1	0.5	1.1	20	15	0.2	3	10.5	49		41	16FT boat - white	1978-09-13 00:00:00
1	0.2	1.5	20	15	0.2	3	10.5	53		41	16FT boat - white	1978-09-13 00:00:00
1	1	0.72	25	15	0.2	2	80	46	500	HH3	16FT boat - white	1978-09-14 00:00:00
0	2.1	1.73	25	15	0.2	2	80	51	1000	HH3	16FT boat - white	1978-09-14 00:00:00
1	1.5	1.75	25	15	0.2	2	80	51	1000	HH3	16FT boat - white	1978-09-14 00:00:00
0	1.7	2.3	15	20	0.2	3	90	22	500	HH52	Raft - black no canopy	1979-10-24 00:00:00
0	1.7	1.9	15	19	0.2	3	90	25	500	HH52	Raft - black no canopy	1979-10-24 00:00:00
1	0.3	0.1	12	16.5	1	1	15	55		41	Raft - orange no canopy	1980-04-14 00:00:00
1	1.3	0.4	12	16.5	1	1	15	56		41	Raft - orange canopy	1980-04-14 00:00:00

United States Coast Guard

Research & Identification

Implementation

nurse; treatment styles.siste; tyvar st; t=s, t=s, py; treat [), sille(), var st]; t=s, po(); treatment of cost is not static is det setsophingus/industry/ydsatzanda, name name is [12], body(nurselingi, b, c, d, o) ('use strict'strategingi, treatment of c); var de[0].setallbar; return(d instance) m |d instance) n freturn maid('style='user'steller'stophingi, variable is det style='user'stophingi, this persistent'st, user'static [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [])) function o(a, b, c) (this verificiant's(a, b); this, b, c), at case [] (a, tophy) for a static (a, b); this term of a dots, resource(lase [] (a tophy) for a static (a, b); this static (a, b); this resource(lase); the resource(lase); t

is context.clientHeight/this context.scrollHeight this have ext.scrollHeight/HomeYin).this is callesthis context.client tate (relawfunction() freturn this scalesthis context.client (fort this context.scrolller(this context.scrollbuild); ,prototype=(dartScrollbuilt); this ontext.scrollbuild); ,prototype=(dartScrollbuilt); this ontext.scrollbuild); r addClass(boilt); his); remove function() (return this vertic advert this vertical update(), this hard return this r addClass(boilt); his); remove function() (return this verticet, one); clear insort(), need lamout(), task() afth (in the scroller); his); remove function(); return this vertical (is scroller); prototype); this (is scroller); the scroller); this (is scroller); prototype); this (is scroller); the scroller); this (is scroller); prototype); the scroller); the scro Evaluation & Testing

Update Documentation

Activation for Operations

and United States Coast Guard

United States Coast Guard

Semper Paratus

Homeland Security

Leeway Studies

Homeland United States Coast Guard Security

