

Quality First Quality

Once again we are proud to present our annual water quality report covering all testing performed between January 1 and December 31, 2010. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all of our water users. Thank you for allowing us to continue providing you and your family with quality drinking water.

We encourage you to share your thoughts with us on the information contained in this report. Should you ever have any questions or concerns, we are always available to assist you.

The Benefits of Fluoridation

Fluoride is a naturally occurring element in many water supplies in trace amounts. In our system, the fluoride level is adjusted to an optimal level averaging one part per million (ppm) to improve oral health in children. At this level, it is safe, odorless, colorless, and tasteless. There are over 3.9 million people in 140 Massachusetts water systems and 184 million people in the United States who receive the health and economic benefits of fluoridation.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at

risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http:// water.epa.gov/drink/hotline.

How Is My Water Treated and Purified?

Our drinking water is treated with potassium carbonate, sodium fluoride, and sodium hypochlorite. The water in this geographic area is naturally acidic, with an average pH of 5.9 (7.0 is neutral). Acidic water can be harmful to the distribution system. Potassium carbonate is used to buffer the water to as close to a neutral pH as possible. At the request of the U.S. Coast Guard, owner and operator of the family housing area, sodium fluoride is added to the water. This compound has proven effective in strengthening teeth. Finally, sodium hypochlorite is used to disinfect the water supply by killing bacteria.

Where Does My Water Come From?

Our drinking water supply is provided entirely by groundwater. J-Well, which is located on Herbert Road, is our primary pumping station. We are also connected to the Upper Cape Regional Water Supply Cooperative. The Cooperative's water sources come from three wells located in the northeastern corner of Camp Edwards. On average, we provide up to 300,000 gallons of quality water every day. All of the Otis public water supply is drawn from the Sagamore Lens of the Cape Cod single-source aquifer. This lens runs from the Cape Cod Canal eastward into the town of Yarmouth. To learn more about our watershed on the Internet, go to the U.S. EPA's Surf Your Watershed Web site at http://cfpub.epa.gov/surf/locate/index.cfm.

Lead and Drinking Water

f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Otis Air National Guard Base is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to \$1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at www.nrdc.org/water/drinking/bw/exesum.asp.

Community Participation

On-base residents are also invited to raise any questions or concerns regarding drinking water at the Air Station Cape Cod community meeting. The date and time of this annual event will be posted in the Otis Notice.

Questions?

For more information about this report, or for any questions relating to your drinking water, please call the water supply superintendent, Mr. Richard Souza, at (508) 968-4102.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand) causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by crossconnections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed all industrial, commercial, and institutional facilities in the service area to make sure that all potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test each backflow preventer to make sure that it is providing maximum protection.

For more information, review the Cross-Connection Control Manual from the U.S. EPA's Web site at http://water.epa.gov/infrastructure/ drinkingwater/pws/crossconnectioncontrol/index.cfm. You can also call the Safe Drinking Water Hotline at (800) 426-4791.

Source Water Assessment and Protection

SWAP explanation

The Source Water Assessment and Protection (SWAP) program, established under the federal Safe Drinking Water Act, requires every state to inventory land uses within the recharge areas of all public water supply sources; to assess the susceptibility of drinking water sources to contamination from these land uses; and to publicize the results to provide support for improved protection.

What is my system's ranking?

A susceptibility ranking of high was assigned to this system due to the absence hydrogeologic barriers (i.e., clay) that can prevent contaminant migration.

Where can I see the SWAP report?

Information on obtaining the complete SWAP report is available by contacting the water supply superintendent at (508) 968-4102. The report is also available online at www.mass.gov/dep/water/ drinking/4096001.pdf.

Potential Sources of Contamination

Being a military facility, Otis ANG Base, has the potential of having fuel, chemicals, and other material(s) as possible sources of contamination.

Stormwater Pollution Prevention

Studies of water quality. Each building/area operated by the 102nd has been evaluated and categorized, and Best Management Practices (BMP) have been implemented at industrial areas to ensure that processes do not adversely impact any stormwater runoff. BMPs include good housekeeping practices, minimization of exposure, spill prevention measures, construction of secondary containment structures, management of stormwater runoff, and employee training. For the 102nd, mandatory quarterly visual monitoring and voluntary quarterly analytical testing is conducted at each outfall area. The results of these examinations have not shown any detrimental effects on the quality of stormwater from the activities conducted by the 102nd.

Why do I get this report each year?

Community water system operators are required by federal law to provide their customers with an annual water quality report. The report helps people make informed choices about the water they drink. It lets people know what contaminants, if any, are in their drinking water and how these contaminants may affect their health. It also gives the system operators a chance to tell customers what it takes to deliver safe drinking water.

Why does my water sometimes look "milky"?

The "milky" look is caused by tiny air bubbles in the water. The water in the pipes coming into your home or business is under pressure, so gasses (the air) are dissolved and trapped in the pressurized water as it flows into your glass. As the air bubbles rise in the glass, they break free at the surface, thus clearing up the water. Although the milky appearance might be disconcerting, the air bubbles won't affect the quality or taste of the water.

How can I keep my pet's water bowl germ free?

Veterinarians generally recommend that water bowls be washed daily with warm, soapy water—normally when you change the water. Scour the corners, nooks, and crannies of the water dish using a small scrub brush. In addition, once a week put water bowls into the dishwasher to sanitize them with hot water. In most situations, disinfectants like bleach are not needed; warm, soapy water is all you need to keep your pet's water clean and safe.

How much water is used during a typical shower?

The Federal Energy Policy Act set a nationwide regulation that limits showerheads to a maximum flow of 2.5 gallons per minute (GPM). Showerheads made before 1980 are rated at 5 GPM. Since the average shower is estimated to last 8.2 minutes, the old showerheads use 41 gallons of water while the newer, low-flow showerheads use only about 21 gallons.

Is it okay to use hot water from the tap for cooking and drinking?

No, always use cold water. Hot water is more likely to contain rust, copper, and lead from household plumbing and water heaters. These substances can dissolve into hot water faster than they do into cold water, especially when the faucet has not been used for an extended period of time.

How many contaminants are regulated in drinking water?

The U.S. EPA regulates over 80 contaminants in drinking water. Some states may choose to regulate additional contaminants or to set stricter standards, but all states must have standards at least as stringent as the U.S. EPA's.

Sampling Results

During the past year, we have taken numerous water samples in order to determine the presence of any biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Note: Perchlorate was not detected in our drinking water during 2010.

REGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chlorine (ppm)	2010	[4]	[4]	1.61	0.03-1.61	No	Water additive used to control microbes
Combined Radium (pCi/L)	2009	5	0	0.4	NA	No	Erosion of natural deposits
Fluoride (ppm)	2010	4	4	1.18	0.50-1.18	No	Water additive which promotes strong teeth
Nitrate (ppm)	2010	10	10	0.05	ND-0.05	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)	2010	80	NA	20	ND-20	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2008	1.3	1.3	0.5	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2008	15	0	12	1/20	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED SUBSTANCES¹

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Chloroform (ppb)	2010	0.7	ND-0.7	By-product of drinking water disinfection
Sodium (ppm)	2010	10	ND-10	Some sodium is always expected to be present in groundwater

¹Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

90th Percentile: Out of every 10 homes sampled, 9 were at or below this level.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level

Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual

Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual

Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).