

Annual Water Quality Report

Reporting Year 2014

Presented by

Otis Air National Guard Base

The Highest of Standards

We are once again proud to present our annual

water quality report covering all testing performed between January 1 and December 31, 2014. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please remember that we are always available to assist you should you ever have any questions or concerns about your water.

The Benefits of Fluoridation

Fluoride is a naturally occurring element in many water supplies in trace amounts. In our system, the fluoride level is adjusted to an optimal level averaging one part per million (ppm) to improve oral health in children. At this level, it is safe, odorless, colorless, and tasteless. There are over 3.9 million people in 140 Massachusetts water systems and 184 million people in the U.S. who receive the health and economic benefits of fluoridation.

How is My Water Treated and Purified?

Our drinking water is treated with potassium carbonate, sodium fluoride, and sodium hypochlorite. The water in this geographic area is naturally acidic, with an average pH of 5.9 (7.0 is neutral). Acidic water can be harmful to the distribution system. Potassium carbonate is used to buffer the water to as close to a neutral pH as possible. At the request of the U.S. Coast Guard, which is the owner and operator of the family housing area, sodium fluoride is added to the water. This compound has proven effective in strengthening teeth. Finally, sodium hypochlorite is used to disinfect the water supply by killing bacteria.

Where Does My Water Come From?

groundwater. J-Well (40906001-01G), which is located on Herbert Road, is our primary pumping station. We are also connected to the Upper Cape Regional Water Supply Cooperative. The Cooperative's water sources come from three wells located in the northeastern corner of Joint Base Cape Cod. On average, we provide up to 300,000 gallons of high-quality water every day. All of the Otis public water supply is drawn from the Sagamore Lens of the Cape Cod Single-source aquifer. This lens runs from the Cape Cod Canal eastward into the town of Yarmouth. To learn more about our watershed on the Internet, go to the U.S. EPA's Surf Your Watershed Web site at

http://cfpub.epa.gov/surf/locate/index.cfm.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Substances That Could Be in Water

Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses:

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Tap Water vs. Bottled Water

hanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the DA completely exempts bottled water that's packaged and sold within the same state, which accounts for about **70 percent** of all bottled water sold in the United States.

People spend **10,000 times** more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to **\$1,400 annually**. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at: www.nrdc.org/water/drinking/bw/exesum.asp

Source Water Assessment and Protection

SWAP explanation

The Source Water Assessment and Protection (SWAP) program, established under the federal Safe Drinking Water Act, requires every state to inventory land uses within the recharge areas of all public water supply sources; to assess the susceptibility of drinking water sources to contamination from these land uses; and to publicize the results to provide support for improved protection

What is my system's ranking?

A susceptibility ranking of high was assigned to this system due to the absence hydrogeologic barriers (i.e., clay) that can prevent contaminant migration.

Where can I see the SWAP report?

Information on obtaining the complete SWAP report is available by contacting the water supply superintendent at (508) 968-4102. The report is also available online at www.mass.gov/dep/water/drinking/4096001.pdf.

Potential Sources of Contamination

Being a military facility, Otis ANG Base, has the potential of having fuel, chemicals, and other material(s) as possible sources of contamination.

Cross Connection Control and Backflow Prevention

Otis ANGB makes every effort to ensure that the water delivered to your home and business is clean, safe, and free of contamination. Our staff works very hard to protect the quality of the water delivered to our customers throughout the entire treatment and distribution system. But what happens when the water reaches your home or business? There is still a need to protect the water quality from contamination caused by a cross-connection.

What is a Cross-Connection?

A cross-connection occurs whenever the drinking water supply is or could be in contact with potential sources of pollution or contamination. Cross-connections exist in piping arrangements or equipment that allow the drinking water to come in contact with non-potable liquids, solids, or gases (hazardous to humans) in event of a backflow.

What is Backflow?

Backflow is the undesired reverse of the water flow in the drinking water distribution lines. This backward flow of water can occur when the pressure created by equipment or a system, such as a boiler or air-conditioning, is higher than the water pressure inside the water distribution line (backpressure), or when the pressure in the distribution line drops due to routine occurrences such as water main breaks or heavy water demand causing the water to flow backward inside the water distribution system (backsiphonage). Backflow is a problem that many water consumers are unaware of. And every water customer has a responsibility to help prevent them.

What Can I Do to Help Prevent a Cross Connection?

Without the proper protection something as simple as a garden hose has the potential to contaminate or pollute the drinking water lines in your house. In fact, over half of the country's cross-connection incidents involve unprotected garden hoses. There are very simple steps that you, as a drinking water user, can take to prevent such hazards:

- -Never submerge a hose in soapy water buckets, pet watering containers, pool, tubs, sinks, drains, or chemicals.
- -Never attached a hose to a garden sprayer without the proper backflow preventer.
- **-Buy** and install a hose bib vacuum breaker on every threaded water fixture. The installation can be as easy as attaching a garder hose to a spigot. This inexpensive device is available at most hardware stores and home-improvement centers.
 - -Identify and be aware of potential cross-connections to your water line.
 - -Buy appliances and equipment with a backflow preventer.
 - -Buy and install backflow prevention devices or assemblies for all high and moderate hazard connections.

Community Participation

On-base residents are also invited to raise any questions or concerns regarding drinking water at the Air Station Cape Cod community meeting. The date and time of this annual event will be posted in the Otis Notice.

Additionally, an electronic version of this publication will be available online at the 102d IW website: http://www.102iw.ang.af.mil/news/index.asp

Lead and Drinking Water

f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at

www.epa.gov/safewater/lead.

OUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call the water supply

superintendent, Mr. Richard Souza,

Our Violations & Exceedance

n September, during our routine sampling two samples tested positive for total coliform (TC). Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

Following procedure, the positive sample location Tower 2, was retested for both total coliform and E. coli, along with the upstream and downstream locations of Bldgs. 753 and 197 respectively. This analysis came back positive for TC at Bldg. 197. After further analysis and direct chlorination of Bldg. 197, the problem was corrected and all further samples came back negative for total coliforms.

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Stormwater Pollution Prevention

tormwater discharges have been identified as a significant source of water pollution in numerous nationwide studies of water quality. Each area operated by the 102nd Intelligence Wing has been evaluated and categorized, and Best Management Practices (BMP) have been implemented at industrial areas to ensure that processes do not adversely impact any stormwater runoff. BMPs include good housekeeping practices, minimization of exposure, spill prevention measures, construction of secondary containment structures management of stormwater runoff, and employee training. For the 102nd, mandatory quarterly visual monitoring is conducted at each outfall area. The results of these examinations have not shown any detrimental effects on the quality of stormwater from the activities conducted by

the102nd.

REGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Asbestos (MFL)	2013	7	7	ND	NA	No	Decay of asbestos cement watermains; Erosion of natural deposits
Chlorine (ppm)	2014	[4]	[4]	2.39	0.01-2.39	No	Water additive used to control microbes
Fluoride ¹ (ppm)	2014	2	4	1.12	0.27-1.12	No	Water additive that promotes strong teeth
Haloacetic Acids [HAAs] (ppb)	2014	60	NA	4.69	ND-4.69	No	By-product of drinking water disinfection
TTHMs [Total Trihalomethanes] (ppb)	2014	80	NA	10.9	9.39-10.9	No	By-product of drinking water disinfection
Perchlorate (ppb)	2014	2	NA	0.24	ND-0.24	No	Rocket propellants, munitions, flares, fireworks, blasting agents
Nitrate (ppm)	2014	10	10	1.42	0.09-1.42	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	2014	1.0	1.0	ND	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Barium (ppm)	2012	2	0.002	0.016	NA	No	Natural erosion; drilling wastes
Gross Alpha (pCi/L)	2012	15	NA	1.07	NA	No	Natural erosion
Combined Radium (pCi/L)	2009	5	0	0.85	0.06-0.85	No	Natural erosion
Turbidity ² (NTU)	2013	TT	NA	0.22	NA	No	Soil runoff
Total Coliform Bacteria	2014	1	0	2	NA	Yes	Naturally present in the environment

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH PERCENTILE)	SITES ABOVE AL/TOTAL SITES		TYPICAL SOURCE
Copper (ppm)	2014	1.3	1.3	1.58	4/20	Yes	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2014	1.5	0	0.0032	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED SUBSTANCES³

	YEAR	AMOUNT	TYPICAL SOURCE
SUBSTANCE (UNIT OF MEASURE)	SAMPLED	DETECTED	
Sodium (ppm)	2013	9.2	Some sodium is always expected to be present in groundwater
Chloroform (ppb)	2014	3.30	By-product of drinking water chlorination
Bromodichloromethane (ppb)	2014	3.22	Trihalomethane; by-product of drinking water chlorination
Dibromochloromethane (ppb)	2014	3.59	Trihalomethane; by-product of drinking water chlorination
Manganese (ppm)	2014	0.01	Erosion of natural deposits
Sulfate (ppb)	2013	5.9	Natural sources
Strontium (ppb)	2014	22	Milling processes, coal burning, and phosphate fertilizers
Chromium (ppb)	2014	.33	Discharge from pulp mills; erosion of natural deposits
Hexavalent Chromium (ppb)	2014	.28	Industrial activities or from naturally occurring sources

¹ EPA set 4 ppm as the MCL. Our state has a secondary contaminant level (SMCL) of 2 ppm for fluoride to better protect human health

³Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

Definitions

90th Percentile: Out of every 10 homes sampled, 9 were at or below this level.

Action Level): The concentration of

aminant which, if exceeded, triggers ent or other requirements that a water system must

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as cle allowed in drinking water. MCLs are set as MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no

known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual

Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual

MRDLG (Maximum resource)

Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfe

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NA: Not applicable

MFL: Million Fibers per Liter

pCi/L: picocuries per liter (measure of radioactivity)

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million ms per liter)

NTU: Nephelometric

Treatment Technique (TT): A required process intended to redulevel of a contaminant in drinking

²Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of our water quality.